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Abstract

A practical methodology based on a topology group concept is presented for finding optimal topologies
of trusses. The trusses are subjected to natural frequency, stress, displacement and Euler buckling
constraints. Multiple loading conditions are considered, and a constant nodal mass is assumed for each
existing node. The nodal cost as well as the member cost is incorporated in the cost function. Starting with a
ground structure, a sequence of substructures with different node distribution, called topology group, is
generated by using the binary number combinatorial algorithm. Before optimizing a certain topology, its
meaningfulness should be examined. If a topology is meaningless, it is then excluded; otherwise, it is
optimized as a sectional area optimization problem. In order to avoid a singular solution, the dimension of
the structure for a given topology is kept unchanged in the optimization process by giving the member to be
removed a tiny sectional area. A parabolic interpolation method is used to solve a non-linear constrained
problem, which forms the part of the algorithm. The efficiency of the proposed method is demonstrated by
two typical examples of truss.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Considerable work has been done on structural optimum design since the 1960s. Most of this
work is related to the optimization of the members’ cross-sections, while less effort has been
devoted to topology optimization. It is recognized, however, that topology optimization can
greatly improve the design.
Some algorithms have been developed for the problem of finding optimal topologies of trusses

with stress and displacement constraints under static loading conditions [1–10], and some review
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papers on this topic are also available [1,2]. The simplest approach to deal with topology
optimization problems is referred to as the ground structure method [1]. A ground structure is
formed by many connected members, including all the nodes on which the external loads are
imposed and the supports. In the ground structure method, some unnecessary members are
removed from a ground structure and a structural topology is believed to be determined by the
remaining members. Then, the optimal topology is selected through the sectional area optimum.
A two-level genetic algorithm-based search method [8] is an adaptation of the ground structure
method. Cai and Cheng [9] studied the simulated annealing algorithm for topology optimization
of truss. Zou et al. [10] developed the truss topology optimization program referred to as the
biology hypothesis of Lamarck. But these methods are not suitable to the topology optimization
with nodal mass. In addition, the natural frequencies are not considered as constraints in the
methods.
Since stress constraints should not be satisfied in a removed member, the optimal topology

might be an isolated or a singular solution, which can be found by varying the cross-sectional
areas continuously and by deleting some members with a zero cross-sectional area. This is one of
the most difficult troubles of structural topology optimization problems. Wang and Sun [11]
developed a method to find an optimal topology by giving a tiny value to the member to be
removed and thus to avoid singular solutions. However, it is almost impossible to apply this
method to problems with natural frequency constraints. This is because when the nodes to be
removed hypothetically remain by assigning tiny values to the members connected to the
corresponding nodes, zero-value natural frequencies maybe led to by the process.
It is well known in engineering practices that the cost of the nodes connecting the members may

sometimes be equivalent to or even greater than that of the members. A node should be kept if at
least one member connected to the node has a positive cross-sectional area. Ohsaki [12] developed
a genetic algorithm for topology optimization of trusses to consider the nodal cost as well as the
member cost. In his method, the cost of a node is assumed to be constant where it exists. The
proposed nodal cost concept is quite useful in engineering applications. However, the algorithm
may require time-consuming computational effort if it is applied to large trusses and only static
loading conditions are considered.
In order to avoid resonance or undesirable coupling effects between the structure

and the external excitation, the natural frequencies of the structures have been considered as
constraints or objectives in the optimization process since the late 1960s [13–15]. Very little
work, however, has been done on topology optimization of trusses under natural frequency
constraints. Nakamura and Ohsaki [16] presented an algorithm to deal with the optimum
topology of plane trusses for a specified fundamental frequency based on the concept of an
ordered set of optimal trusses. However, it is quite difficult to apply this method to problems
with other constraints such as stress constraints, because it utilizes the conditions for global
optimality.
In this paper, an algorithm based on the topology group concept is presented for topology

optimization of trusses with natural frequency constraints as well as stress, displacement and
Euler buckling constraints under multiple static loading conditions. The nodal cost and the
member cost are incorporated in the objective function. Computer programs have been developed
to perform this optimization and two numerical examples are presented to demonstrate the
proposed method.
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2. Topology optimization problem

The optimal design problem discussed in this paper can be stated as follows: for a given ground
structure, find the node layout and the cross-sectional areas such that the cost of the structure is
minimized.
Minimize

CðAÞ ¼
XN1

i¼1

ðciAiLiÞ þ
XN2

k¼1

bk; ð1Þ

subject to

sipsilpsi; ð2Þ

djpdjlpdj; ð3Þ

�sip� sE
i ; ð4Þ

%frXfrXfr ðr ¼ 1; 2; 3yRÞ; ð5Þ

AiX0; bkX0; ð6Þ

ði ¼ 1; 2;y;N1; j ¼ 1; 2;y; n; k ¼ 1; 2;y;N2; l ¼ 1; 2;y;mÞ;

where N1 and N2 denote the number of the members and nodes of the structure, respectively, Ai;
Li and ci are the sectional area, length and cost coefficient of the ith member, respectively, bk

denotes the cost of the kth node, n and m are the number of displacement constraints and loading
conditions, respectively, sil is the stress of ith member under the lth loading condition, si and si

are the corresponding compressive and tensile stress limits on sil ; respectively, djl is the
displacement of the jth degree of freedom under the lth loading condition, dj and dj are the
corresponding lower and upper limits on djl ; respectively, sE

i is the stress of the ith member at
which Euler buckling occurs. As a general simplification approach, the lower and upper bounds
on stress and displacement are assumed to be the same for every loading condition. fr denotes the
rth eigenfrequency of the structure and fr and %fr are the corresponding lower and upper bound,
respectively. R is the number of natural frequency constraints. As stated in Eq. (1), the objective
function is taken as the cost of the structure. In engineering practices, calculating the cost of the
structure is very complicated. It depends on not only the volume of the material but also the
manpower by which the structure is manufactured. For a simple presentation of the methods, the
cost of the structure is assumed to be the mass it occupied and thus the coefficient ci denotes the
density of the ith member. The cost of the node is used in a specific structure, that is to say, the
cost bk of the kth node is defined as

bk ¼ b when bk exists; ð7Þ

bk ¼ 0 when bk is removed; ð8Þ

where b is the prescribed cost of a node.
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The displacement and stress of the structure can be obtained through structural static analysis

½k�fdg ¼ fpg; ð9Þ

fsg ¼ ½S�fdg; ð10Þ

in which ½k� denotes the stiffness matrix of the structure based on finite element method (FEM),
fpg is the external force vector for a given loading condition, ½S� is the stress matrix defined
according to the relationship between the stress and node displacement.
The Euler buckling stress can be formulated as

sE
i ¼

�KiAiE

L2i
; ð11Þ

in which Ki is a constant depending on the cross-sectional geometry of the ith element, E denotes
Young’s modulus of the material and it is assumed to be the same for every member.
The rth frequency of the structure can be calculated from the rth eigenvalue of the structure

fr ¼
ffiffiffiffi
lr

p
=2p; ð12Þ

in which lr is determined by solving the eigen-problem based on FEM

½k�ffrg ¼ lr½M�ffrg; ð13Þ

where ½M� is the mass matrix of the structure, lr is the rth eigenvalue of the structure and ffrg is
the corresponding eigenvector.

3. Topology optimization method

As mentioned in the introduction, most of the work on truss optimal topologies, up to now, has
been focused on the problems subjected to stress and/or displacement under static loading
conditions. It is well known that Euler buckling is very difficult to deal with in truss topology
optimization. When natural frequencies are also considered in truss topology optimization, it
becomes especially complicated to determine the optimum. In despite of this fact, from the view of
engineering applications, the Euler buckling problem and fundamental frequency should be
considered for a truss subjected to static and dynamic loads in order to guarantee its feasibility. In
order to solve the above-mentioned problems and simplify the calculation, a practical truss
optimization method is proposed. In this method, the imaginary bar and constraint deletion
technique is introduced first; then a topology group method is proposed and the sectional area
optimization for a certain topology is performed by using a improved one-dimensional search
method.

3.1. Imaginary bar and constraint deletion

It is obvious from Eqs. (1)–(6) that the topology optimization problem may also be described as
a parameter optimization model for cross-sectional areas. The only difference is that the cross-
sectional areas of members and the cost of nodes can reach zero.
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When a node is removed, the nodes and members of the remaining structure have to be re-
numbered to construct a new FE model for analysis. However, this work is very cumbersome, as
there are too many possible options for node and member removal. An alternative is to use a
imaginary bar to replace the removed member, in other words, when a member’s cross-sectional
area is reaching zero, a tiny value is assigned to it to keep the mesh dimension of the FE model,
i.e.,

Ai ¼ e when Aipe; ð14Þ

where e is prescribed a tiny positive value.
The feasibility of using an imaginary bar is easy to understand. In fact, as e is a tiny value, the

difference of the structural stiffness and mass matrices before and after removing the imaginary
bar is very small and can be ignored.
It is a common practice in structural topology optimization that the structure is highly

redundant. This results in an interesting phenomenon, where even if the sectional area of a
member becomes zero, its corresponding expression of stress is still kept at a relatively large value.
However, it can be explained easily. In fact, the stress of a member is determined by the relative
displacement of the corresponding nodes to which the member is connected (see, Eq. (10)), while
the relative displacement of the corresponding nodes are determined by all the members connected
to them. Therefore, the stress constraints at a zero cross-sectional area can still be violated and the
evaluating process of other members is affected. This is obviously unreasonable. Accordingly,
singularity of the optimal solution under stress constraints as well as difficulties due to local
buckling is extensively investigated in some papers [17–19]. Guo et al. [17] presented a second
order smooth-extended technique and the so-called e-relaxed method to find the solution of
singular optima. A heuristic algorithm [18] for optimal design of trusses is also presented with
account for stress and buckling constraints. Thus, in the paper we make use of a constraint
deletion technique i.e., when a tiny cross-sectional area is reached, the corresponding stress and
local stability constraints are ignored.
It is very efficient and feasible to overcome the difficulty of removing a member by using the

above described imaginary bar method. But it is still very difficult to deal with node removal.
When the mass of a node is considered, the node can never be removed by the imaginary bar
method. In fact, when a node needs to be removed, all the sectional areas of the members
connecting to the node should be equal to e: While the mass of the node has a relatively large
value, the truss will be led to a mechanism and the fundamental frequency will be led to zero. Even
though we can assign a tiny value to the nodal mass for the node to be removed, the natural
frequencies of the true structure may still be affected as the sectional areas of the members are also
tiny. Therefore, further effort should be made towards node removal. A feasible method based on
the concept of the proposed topology group will be discussed in detail in the following section.

3.2. Topology group method

The objective of topology optimization is to select a minimum cost truss from a given ground
structure which contains a large set of candidate trusses. The ground structure is defined here as a
truss with N predetermined members connecting M nodes. A candidate truss is obtained by
removing possible members and nodes from the ground structure.
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There are a large number of nodes and many more members in a practical ground structure. In
the ground structure, some nodes can be removed, but others can never be removed; such as the
supports, the nodes on which the external loads are imposed, and the nodes which if removed, a
rigid body movement will be caused. As the ground structure for topology optimization is usually
highly redundant, generally speaking, there are many possible nodal layouts and for a specific
nodal layout there are still many candidate trusses. We define a specific possible configuration of
the structure as a topology in which the support nodes, the nodes on which external load imposed,
and the necessary nodes to keep the structure from rigid body movement and the members
connected to those nodes in the ground structure should remain. It is obvious that as all possible
nodal layouts are considered in topology group, the node-removal problem is overcome and it is
unnecessary to remove any more nodes in a specific topology.
To illustrate this concept clearly, let us consider a well-known truss with six nodes and 10

members as shown in Fig. 1(a). For this ground structure, only node No. 1 could be removed,
because nodes Nos. 5 and 6 are support nodes, Nos. 2 and 4 are nodes on which external loads are
imposed, and node No. 3 is necessary to keep the structure from rigid body movement. Therefore,
there are only two topologies for this ground structure as shown in Fig. 1(a) and (b), respectively.
Based on the concept of the topology group, a more general algorithm should be developed to

work out all the possible topologies and to delete all meaningless topologies automatically. The
algorithm is shown through a flow chart in Fig. 2. The optimization begins with the original
structure that is specified as an initial ground structure. From the ground structure, a sequence of
substructures with different node distributions, or a topology group, can be generated. In order to
avoid the possibility of losing a good candidate truss and decrease the intervention of manual
work, when we determine a possible topology, we need not care initially whether or not it is a
mechanism, if it is not easily determined. Assume that there are NT possible topologies numbered
in a sequence, where NT ¼ 2md and md ¼ Nt � Nf ; in which Nt is the total node number of the
ground structure and Nf is the number of the fixed nodes (such as support and loading nodes).
After a specified topology is selected, consequently, the sectional area optimization process should
be dealt with, for further weight reduction, and meanwhile we need to examine the topology as to
whether it is a mechanism by checking or whether its stiffness matrix is singular. After optimizing
all the NT possible topologies, the topology with a minimum cost is determined finally as the
optimal topology.

Fig. 1. (a) Ground structure and first topology for the 10-bar truss and (b) second topology for the 10-bar truss.
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In the general algorithm, a binary number combinatory algorithm is employed to determine all
possible topologies. That is, when a node is removed, we note it as a binary number ‘‘1’’, if it
remains, we note it as a binary number ‘‘0’’. For example, when there are three nodes, which can
be possibly removed, then the possible topologies can be noted as (000), (001), (010), (100),
(011),y, (111).
In the flow chart (Fig. 2), the ‘‘node examination’’ is performed by examining whether there is a

node, which is only connected to two members. This is because when a node with no external

Fig. 2. Flow chart for the general algorithm.
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loads to which is only connected to two members, which do not lie along with a straight line, the
node must be meaningless, as those two members will not bear any stress. Therefore, when a
topology has at least one such node, the topology can then be taken as meaningless and it is
certainly unnecessary to do any further optimization analysis.
The ‘‘rigid body movement examination’’ is performed by examining whether the stiffness

matrix is singular. Although all nodes of a certain topology are meaningful, the corresponding
structure can still be a mechanism that results in rigid body movement. When a topology creates
rigid body movement, it must not bear some types of external loads. Thus, it is meaningless and
need not be analyzed any further too.
The ‘‘sectional area optimization’’ is performed by a one-dimensional search method. We

perform the ‘‘compatibility examination’’ by examining whether the current topology needs to
remove any nodes. For the above example, if node 2 cannot be removed, or the topology group
(010) is meaningless, then topology group (011), (110) and (111) need not be examined for
meaningfulness. Because when a node cannot be removed in a certain structure, it can never be
removed in the substructures constructed from that certain one. Therefore, when a certain
topology is determined meaningless, all the topologies constructed from the certain one need not
to be examined or optimized.

3.3. Sectional area optimization

As a general rule, in solving non-linear programming problems, gradient and second-derivative
method converge faster than the direct search methods. However, in practice, the derivative-type
methods have two main barriers to their implementation. First, in structural optimization with
dynamic constraints, it is laborious to provide analytical functions for the derivatives needed in a
gradient algorithm. Second, the calculation of derivatives is time-consuming. Hence, a direct
search optimization algorithm is introduced here. In order to use the unconstrained direct search
technique, the original problem formulated in Eqs. (1)–(6) is transformed to an unconstrained one
by using the penalty method that is

Minimize f ðA; lÞ ¼ CðAÞ þ l
Xncon

i¼1

½maxð0; giðAÞÞ�; ð15Þ

in which l is a penalty multiplier, gi denotes the constraints in Eq. (2)–(5) and ncon denotes the
total number of constraints stated. As constraints in sectional area and nodal cost can be easily
satisfied in the calculation program, they are not considered in Eq. (15). The simplest, but feasible,
type of search method, a one-dimensional search method, is used in this paper. The one-
dimensional search algorithm is to determine the minimum point tmin of the element function

jðtÞ ¼ f ðAðkÞ þ tSðkÞÞ; ð16Þ

from the initial point Að0Þ (initial area values) in the searching direction SðkÞ ¼ �rf ðAðkÞÞ; where f

is objective function (e.g., the cost of the structure) and t is the interval of calculation. Actually,
the search direction is defined using the gradient of the penalized objective function and the
gradient is computed by the finite difference approach. Using the parabolic interpolation method
to determine the optimal tmin; the corresponding optimum sectional areas are AðkÞ þ tminSðkÞ:When
A

ðkÞ
i þ tminS

ðkÞ
i is equal to zero, the corresponding member is then deleted in kth iterative loop.
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However, as mentioned in the former sections, a member can hardly be deleted if it bears
compressive stress and Euler buckling constraints are considered. In order to examine whether a
member with compressive or tensile stress can truly be deleted or not, an attached step for this
purpose should be considered in the one-dimensional search method, that is

A
ðkÞ
i ¼ e if f ðAðkÞ

i ¼ eÞof ðAðkÞ
i þ tminS

ðkÞ
i Þ; ð17Þ

where e is prescribed a tiny positive value.
If a certain member with compressive or tensile stress can be removed, it will be removed by

Eq. (17); otherwise, an optimal sectional area of the member will be determined by the one-
dimensional search method.

4. Numercial example

The feasibility and effectiveness of the proposed method are illustrated by two examples. Let
Euler buckling coefficient ki in Eq. (11) be 4:0 which corresponds to one of a tubular member with
a ratio of mean diameter to wall thickness of approximately 10.0. The elastic modulus and density
of the structures are assumed to be 6:9� 1010 Pa and 2740 kg/m3, respectively. The corresponding
allowable stress for each bar is assumed to be 172.43MPa. The cost of each node is assumed to
5 kg of material in the examples.

4.1. 24-Bar truss

Fig. 3(a) shows the initial ground structure of the 24-bar truss structure. The initial sectional
area is 10.0 cm2 for each member. In this example, Stress, Euler buckling and the displacements of
node 5 and 6 in the y direction, as well as the fundamental frequency constraint are imposed as the
constraints. Two load conditions are considered as shown in Table 1. The displacement constraint
demands that the amplitude of the corresponding displacement is not greater than 0.1m. A fixed
mass of 500 kg is lumped to node 3. The natural frequency constraint demands that the
fundamental frequency is not less than 30.0Hz.
There are four possible topologies as shown in Figs. 3(a)–(d). The optimal topology is

determined as shown in Fig. 3(e), which is the output of topology group No. 4. The optimal
sectional areas of the members are shown in Table 2. The characteristics before and after
optimization are shown in Table 3. In addition, Euler buckling constraints are satisfied for each
member.

4.2. 20-Bar truss

Fig. 4(a) shows the initial ground structure of the 20-bar truss structure. The initial sectional
area is 50.0 cm2 for each member. In this example, Stress, Euler buckling and the displacement of
node 4 in the y direction as well as the fundamental frequency constraint are imposed as the
constraints. Two load conditions are considered as shown in Table 4. The displacement constraint
demands that the amplitude of the corresponding displacement is not greater than 0.01m. The
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natural frequency constraint demands that the fundamental frequency and second frequency are
not less than 60.0 and 100Hz, respectively.
According to the binary number combinatorial algorithm, there are 64 possible topologies that

are noted as (000000), (100000), (010000), (001000), (000100), (000010), (000001), (110000),
(101000), y, (111111) in sequence. Node 5 cannot be removed, or else it results in rigid body
movement. Based on the same reason, node 2 or 8 cannot be removed singly, i.e., topologies

Fig. 3. (a) Ground structure and first topology for the 24-bar truss; (b) second topology for the 24-bar truss; (c) third

topology for the 24-bar truss; (d) fourth topology for the 24-bar truss and (e) optimal topology for the 24-bar truss.

Table 1

Load condition for the 24-bar

P1 (N) P2 (N)

Load condition one 5.0� 104 0.0

Load condition two 0.0 5.0� 104
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(100000) and (000001) are meaningless. Thus, through the ‘‘nodal examination’’ and ‘‘rigid body
movement examination’’, only 17 topologies are meaningful, which are (00000), (010000),
(000100), (000010), (110000), (010100), (010010), (000110), (000011), (110100), (110010), (010110),
(010011), (000111), (110110), (110011), (010111).Then through the ‘‘compatibility examination’’,
there are only eight topologies that are optimized, which are noted as (000000), (010000),
(000100), (000010), (010100), (010010), (000110), (010110) and shown in Figs 4(a)–(h). The
optimal topology is determined as shown in Fig. 4(i), which is the output of topology No. 8. The
optimal sectional areas of the members are shown in Table 5. The characteristics before and after
optimization are shown in Table 6. In addition, Euler buckling constraints are satisfied for each
member.
Because the nodal cost affects structural mass matrix, the optimal solution is different for

different nodal cost. In order to clearly show how the nodal cost affects the optimal solution for
specified constraints, optimal solutions are calculated for several different nodal masses. At the
same time, total nodal masses are not included in optimal structural mass so as to show more
obviously the relation between the optimal solution and the nodal cost. A very interesting linear
relationship between total optimized bar weight and the different constant nodal cost are shown
in Fig. 5. But, it should be further investigated whether the conclusion is a universal law for all the
trusses in which the constant nodal cost is incorporated or just for the example of 20-bar truss
only.

5. Conclusion

An optimization method that is called ‘‘a topology group’’ has been developed for finding the
optimal topology of trusses subjected to constraints on natural frequencies, stress, displacement
and Euler buckling under static loading conditions All the candidate node locations are fixed but
a certain node may be deleted. Starting with the ground structure, all possible node layouts can be
determined by using the binary number combinatorial algorithm. A possible node layout should
at least include the support nodes and the nodes on which the external excitations are imposed. A
sequence of substructures with different node layouts, called a topology group, can then be

Table 2

Optimal sectional area of the 24-bar

Bar no. 1 2 3 4 5 6 7 8 9

Area (cm2) 36.5 15.0 9.51 11.0 17.6 13.8 16.0 14.5 11.02

Table 3

Characteristics of the 24-bar truss before and after optimization

f1 (Hz) d5y (mm) d6y (mm) Cost (kg)

Before optimization 35.2 2.1 2.1 329.0

After optimization 30.0 3.2 3.0 167.0
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Fig. 4. (a) Ground structure and first topology for the 20-bar truss; (b) second topology for the 20-bar truss; (c) third

topology for the 20-bar truss; (d) fourth topology for the 20-bar truss; (e) fifth topology for the 20-bar truss; (f) sixth

topology for the 20-bar truss; (g) seventh topology for the 20-bar truss; (h) eighth topology for the 20-bar truss, and

(i) optimal topology for the 20-bar truss.
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Fig. 4 (continued).

Table 4

Load condition for the 20-bar truss

P1 (N) P2 (N)

Load condition one 5.0� 105 0.0

Load condition two 0.0 5.0� 105

Table 5

Optimal sectional area of the 20-bar truss

Bar no. 1 2 3 4 5 6 7 8

Area (cm2) 71.97 3.76 53.38 53.38 42.12 53.44 3.04 3.02
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generated. Before optimizing a topology, the meaningfulness of the corresponding topology
should be examined as some topologies may include rigid body movement or have meaningless
nodes. If a topology is meaningful, using the improved one-dimensional search method then
optimizes it. The key technique in this paper to deal with Euler buckling constraints is that when a
member is bearing compressive stress, a attached step is added to examine whether the
corresponding member should be deleted or not. The imaginary bar method is also a feasible
technique to maintain the computational dimension for a given topology. In order to optimize
only those meaningful topologies, an efficient method is proposed in this paper to ignore the
obviously meaningless topologies completely.
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Table 6

Characteristics of the 20-bar truss before and after optimization

f 1 (Hz) f 2 (Hz) d4y (mm) Cost (kg)

Before optimization 57.2 97.20 7.7 688.3

After optimization 60.0 130.4 10 225.9

Fig. 5. Aspect of optimal solution w-r-t nodal cost.
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